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HIGH PERFORMANCE FORTRAN FOR AEROSPACE APPLICATIONS* 

PIYUSH MEHROTRAt AND HANS ZIMA* 

Abstract. This paper focuses on the use of High Performance Fortran (HPF) for important classes 

of algorithms employed in aerospace applications. HPF is a set of Fortran extensions designed to provide 

users with a high-level interface for programming data parallel scientific applications, while delegating to the 

compiler/runtime system the task of generating explicitly parallel message-passing programs. We begin by 

providing a short overview of the HPF language. This is followed by a detailed discussion of the efficient use 

of HPF for applications involving multiple structured grids such as multiblock and adaptive mesh refinement 

(AMR) codes as well as unstructured grid codes. We focus on the data structures and computational 

structures used in these codes and on the high-level strategies that can be expressed in HPF to optimally 

exploit the parallelism in these algorithms. 

Key words, distributed memory multprocessing, high-level language, distribution directives 

Subject classification. Computer Science 

1. Introduction. Exploiting the full potential of parallel architectures requires a cooperative effort 

between the user and the language system. There is a clear trade-off between the amount of information 

the user has to provide and the amount of effort the compiler has to expend to generate optimal parallel 

code. The spectrum ranges from low-level languages in which the user has to explicitly encode all the 

parallelism while the compiler effort is minimal, to sequential languages where the compiler has the full 

responsibility for extracting the parallelism. High Performance Fortran (HPF) takes the middle ground - 

sharing the responsibility between the user and the compiler/runtime system. It does this by providing 

Fortran directives which allow the user to express the parallelism and control the data locality at a very 

high level while utilizing a compiler which uses this information to generate the low-level details such as the 

required communication statements. 

In this paper, we focus on applications from Computational Fluid Dynamics (CFD) and show how HPF 

can be used to express the parallelism for algorithms used in this area. As the requirements of the compu- 

tational aerodynamicists have increased, applications with single grids have given way to those employing 

multiple grids and even unstructured grids. We start by providing a brief overview of HPF and use some 

simple single grid applications to show how HPF directives are used. In Section 3, we focus on applications 

which use multiple grids in order to generate flow solutions over complex bodies. Section 4 presents un- 

structured grid applications, describing how the HPF directives can be used to control the data and work 

distributions required for such codes. Concluding remarks can be found in Section 5. 

Note that in this paper we are not concerned with the physics of the computations in these algorithms. 

Rather we focus on the data structures and the computational structures so that we can describe at a high 

level the approaches that can be used when employing HPF for exploiting the parallelism in these codes. 
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Also, we do not discuss the compiler optimizations required to generate low-level code from HPF code. Other 

publications, including [13, 23], cover the required analysis and transformations in great detail. 

2. Overview of HPF. High Performance Fortran is a set of Fortran extensions designed to allow 

specification of data parallel algorithms for a wide range of architectures. The user annotates the program 

with distribution and alignment directives to specify the desired layout of data. The underlying programming 

model provides a global name space and a single thread of control. Explicitly parallel constructs allow the 

expression of fairly controlled forms of parallelism, in particular data parallelism. Thus, the code is specified 

in high level portable manner with no explicit tasking or communication statements. The goal is to allow 

architecture specific compilers to generate efficient code for a wide variety of architectures including SIMD, 

MIMD shared and distributed-memory machines. 

The key concept of HPF - high level directives which allow the sharing of responsibility for exploiting 

parallelism between the user and the compiler/runtime system - is based on language research done by 

several groups over the years including [2, 8, 11, 15, 16, 18, 22]. 

The HPF 2.0 language consists of three parts: a) the Base Language, b) the Approved Extensions, 

and c) Recognized Extrinsic Interfaces. The base language defines the basic HPF features which each HPF 

compiler must support. The Approved Extensions include advanced features that meet specific needs but 

are not likely to be supported by the initial compilers. The Recognized Extrinsic Interfaces are a set of 

interfaces approved by the HPF Forum but which have been designed by others to provide a service to the 
HPF community. 

In the next two subsections we provide a brief description of the base language and the approved 

extensions, respectively. A more complete description of the language can be found in the HPF Language 
specification [12]. 

2.1. The Base Language. The HPF 2.0 Base Language supports the following features for specifying 

the mapping of data and the parallelism in the code. 

Data mapping directives. HPF provides an extensive set of directives to specify the mapping of 

array elements to memory regions associated with "abstract processors." Arrays are first aligned relative to 

each other and then the aligned group of arrays are distributed onto a rectilinear arrangement of abstract 

processors. The alignment directives support the mapping of a dimension of an array relative to the dimension 

of another array. The following types of alignments are allowed: identical alignment, alignment with offset 

and stride, collapsing, embedding, replication and permutation. 

The distribution directives allow each dimension of an array to be independently distributed using the 

block or cyclic distribution. The former partitions a dimension of the array into equal-sized contiguous 

blocks which are distributed across the target set of abstract processors while the latter distributes the 
elements cyclically across the abstract processors. 

Data parallel directives. The current version of HPF (version 2.0) is based on the Fortran 95 standard. 

Thus, the array constructs of Fortran 90 can be used to specify the data parallelism in the code. Also, the 

forall statement and construct (which were introduced in HPF version 1.1 and later adopted in Fortran 95) 

provide a more general mechanism to specify such parallelism. 

HPF itself provides the independent directive which asserts that iterations of a loop do not have any 

loop-carried dependences and thus can be executed in parallel. A reduction clause can be used with this 

directive to identify variables which are updated by different iterations using associative and commutative 
operators. 



!HPF$ PROCESSORS   P(NUMBER.OFJ>ROCESSORS()) 

REAL U(1:N, 1:N), F(1:N, 1:N) 

!HPF$ ALIGN U :: F 

!HPF$ DISTRIBUTE U (*, BLOCK) 

FORALL (I=2:N-1, J = 2:N-1) 

U(I, J) = 0.25 * (F(I, J) + U(I-1, J) + U(I+1, J) + U(I, J-l) + U(I, J+l)) 

END FORALL 

FIG. 2.1. HPF version of a simple Jacobi procedure 

Intrinsic and library functions. HPF provides a set of new intrinsic functions including system 

functions to inquire about the underlying hardware, inquiry functions to inquire about the mapping of the 

data structures and a few computational intrinsic functions. A set of new library routines have also been 

defined so as to provide a standard interface for highly useful parallel operations such as reduction functions, 

combining scatter functions, prefix and suffix functions, and sorting functions. 

Extrinsic procedures. HPF is well suited for data parallel programming. However, in order to ac- 

commodate other programming paradigms, HPF provides extrinsic procedures. These define an explicit 

interface and allow codes expressed using a different language, e.g., C, or a different paradigm, such as an 

explicit message passing, to be called from an HPF program. 

2.2. HPF Approved Extensions. HPF 2.0 Approved Extensions include advanced features which 

allow more complex applications to be expressed using HPF. 

Extensions to data mapping directives. These extensions allow greater control of the mapping of 

data objects. For example, users can map pointers and components of derived types, and can map objects 

to subsets of processors directly. New distribution formats allow irregular distributions. The gen_block 

distribution generalizes the block distribution by allowing non-equal blocks and the indirect distribution 

allows each element of the data object to be mapped individually using a mapping array. 

Another important feature is the support for dynamic remapping of data. If an object has been declared 

dynamic then it can be remapped at runtime using the the realign or redistribute directives. In particular, 

redistribution of an array implies that all other arrays aligned with it have to be remapped. 

Extensions to data parallel directives. In addition to mapping data, the on directive allows users 

to map computation onto processors. The resident directive allows the specification of information about 

accesses to data objects within the scope of an associated on block. 

The task_region directive extends HPF beyond the realm of data parallelism by allowing some forms 

of control parallelism to be expressed within the language. This directive can be used to indicate regions of 

code that can be executed in parallel on different subsets of processors. Even though this is a very restricted 

form of task parallelism, since no communication or synchronization is allowed within these regions, simple 

forms of control parallelism, such as pipelining, can be expressed. 

2.3. Examples of HPF Codes. In this section we provide two code fragments using some of the 

HPF features described above. The first is the Jacobi iterative algorithm and the second is the Modified 

Gram-Schmidt algorithm. 



The HPF version of the Jacobi iterative procedure which may be used to approximate the solution of 

a partial differential equation discretized on a grid, is shown in Figure 2.1. Such an algorithm, using a 

five-point stencil, is typical of many CFD applications. 

In this code fragment, the data objects are mapped as follows. The array F is aligned with the array 

U using the identity alignment1. The array U is declared to distributed via the distribution clause (*, 

BLOCK), implying that the second dimension of the array is block distributed. That is, the columns of U 

(and thus those of F because of the alignment) are distributed by block, by default, across the processor array 

P. P has been declared to be an array of abstract processors whose size is determined by the system inquiry 

function NUMBER.OF^PROCESSORS, which returns the number of processors being used to execute the 

program at runtime. Using this inquiry function, allows the above code can be run on varying numbers of 

processors without recompilation. The computation is expressed using a FORALL construct, where all the 

right hand sides are evaluated using the old values of U before assignment to the left hand side. 

To reiterate, the computation is specified using a global index space and does not contain any explicit 

data motion constructs such as explicit communication statements. Assume now that the forall loop is 

strip-mined by the compiler using the owner computes rule, where the owner of a data object executes the 

statements which compute the value of the object. Since the underlying arrays are distributed by columns, 

the edge columns will have to be communicated to neighboring processors. It is the compiler's responsibility 

to analyze the code and translate it into an explicitly parallel code with the appropriate communication 
statements inserted to satisfy the data requirements. 

As another example, consider the HPF version of the Modified Gram-Schmidt algorithm given in Fig- 
ure 2.22: 

Again, the first directive declares that the columns of the array V are to be distributed by block across 

the memories of the underlying processor set. The outer loop, 7, is sequential and is thus executed by all 

processors. Given the column distribution, in the 7th iteration of the outer loop, the first two K loops should 

be executed by the processor owning the 7th column. 

The second directive declares the J loop to be independent, thus, the iterations of the J loop can be 

executed in parallel, i.e., each processor updates the columns that it owns in parallel. Since the 7th column 

is used for this update, it will have to be broadcast to all processors. Note that the variables K and TMP 

are declared to be new variables. That is, they act as private variables for each iteration and thus do not 
cause any inter-iteration dependences. 

Since the columns are distributed by contiguous blocks across the processors, as the computation in 

the parallel J loop progresses, the processors will become idle. A cyclic distribution of the columns would 

eliminate this problem. This can be achieved by replacing the distribution directive with the following: 

!HPF$ DISTRIBUTE V (*, CYCLIC) 

This declares the columns to distributed cyclically across the processors, and thus will force the work distri- 

bution of the inner J loop to be strip-mined in a cyclic rather than in a block fashion. Thus, all processors 

will remain busy until the tail end of the computation. Note, that all that is required is a change in the 

distribution directive. The code representing the computation itself is independent of the distribution and 

lrThe language provides more complex mechanisms for aligning arrays to other objects including translation, dimension 
collapsing, dimension exchange and replication. 

2A Fortran 90 version of the code fragment, not shown here, would have used array constructs for the K loops. This would 
make the parallelism in the inner loops explicit. 



REAL V(N, N) 

!HPF$ DISTRIBUTE V (*, BLOCK) 

DO 1 = 1, N 

TMP = 0.0 

DO K = 1, N 

TMP = TMP + V(K, I)*V(K, I) 

ENDDO 
XNORM = 1.0 / SQRT(TMP) 
DO K = 1, N 

V(K, I) = V(K, I) * XNORM 
ENDDO 

!HPF$ INDEPENDENT, NEW (K, TMP) 
DO J = 1+1, N 

TMP = 0.0 
DO K = 1, N 

TMP = TMP + V(K, I)*V(K, J) 

ENDDO 
DO K = 1, N 

V(K, J) = V(K, J) - TMP*V(K, I) 

ENDDO 
ENDDO 

ENDDO 

FIG. 2.2. HPF version of Modified Gram-Schmidt algorithm with a one-dimensional distribution 

hence does not need to be modified. Of course, the code needs to be recompiled so that the compiler can 

generate the required communications taking into account the new distribution. 

The above distributions only exploit parallelism in one dimension, whereas the inner K loops can also 

run in parallel. This can be achieved by distributing both the dimensions of V as shown in Figure 2.3. 

Here, the processors are presumed to be arranged in a two-dimensional mesh and the array is distributed such 

that the elements of a column of the array are distributed by block across a column of processors whereas the 

columns as a whole are distributed cyclically. Thus, the first K loop becomes a parallel reduction, indicated 

by the reduction clause over the variable TMP, of the 7th column across the set of processors owning the 

7th column. Similarly, the second K loop can also be declared to be independent and executed in parallel 

by the column of processors which owns the Jth column. The second set of K loops, inside the J loop, can 

be similarly parallelized. 

In this section, we have provided a brief overview of the HPF language and illustrated the use of the 

basic directives through two simple examples. In the next two sections we discuss more complex examples 

and show how the HPF directives can be used to describe the data layout necessary for these codes. 

3. HPF-Based Algorithms for Grid Collections. This section deals with HPF-based algorithms 

that operate on grid collections. More specifically, we define a grid collection as a set of structured grids 

all of which are defined over a given discretized domain in d-dimensional Cartesian space. A structured 

(regular) grid is a contiguous rectilinear arrangement of equal-sized cells in d-dimensional space. It can be 



REAL V(N, N) 
!HPF$ DISTRIBUTE V (BLOCK, CYCLIC) 

DO 1 = 1, N 
TMP = 0.0 

!HPF$       INDEPENDENT, REDUCTION (TMP) 
DO K = 1, N 

TMP = TMP + V(K, I)*V(K, I) 
ENDDO 
XNORM = 1.0 / SQRT(TMP) 

!HPF$  INDEPENDENT 
DO K = 1, N 

V(K, I) = V(K, I) * XNORM 
ENDDO 

!HPF$  INDEPENDENT, NEW (K, TMP) 
DO J = 1+1, N 
TMP = 0.0 

!HPF$    INDEPENDENT, REDUCTION (TMP) 
DO K = 1, N 

TMP = TMP + V(K, I)*V(K, J) 
ENDDO 

!HPF$     INDEPENDENT 
DO K = 1, N 

V(K, J) = V(K, J) - TMP*V(K, I) 

ENDDO 
ENDDO 

ENDDO 

FIG. 2.3. Second HPF version of Modified Gram-Schmidt algorithm with a two-dimensional distribution 

characterized by its origin, and two vectors, the meshsize and the extent, which respectively specify the size 

of each cell and the number of cells in each dimension. Different grids in a collection may have different 
mesh sizes and different extents. 

We will deal in some detail with grid collections of two different types, multiblock grid collections in 

Section 3.1, and AMR (adaptive mesh refinement) grids in Section 3.2. In Section 3.3, we discuss a range of 
HPF-based approaches for both types of grids. 

The framework developed here can also be used for semi-coarsening multigrid algorithms as proposed by 

Overman and Van Rosendale [17]. Such algorithms operate on a hierarchical grid structure; multiple grids 

at any level of this hierarchy can be processed in parallel using the distribution strategies outlined in Section 
3.3. 

3.1. Multiblock Codes. Geometrically complex objects, such as aircraft, cannot be easily modeled 

using a single structured grid. A uniform mesh with a spatial resolution small enough to resolve the localized 

features in the solution, is often impractical due to the size of the required mesh and the wasted resources 

away from the region of interest. This section discusses a class of applications called block-structured 

or multiblock codes which operate on a set of interacting structured grids connected in an irregular man- 



program   PROCESSING A MULTIBLOCK GRID COLLECTION 

begin 

read-number _of-grids 

read-grid-parameters 

allocate_and_setup_grids    / allocate and initialize all grids in  G 

do while (not done( G)) 

boundary_update( G) 

for every   g G   G do 

solve.grid(g) 

end for 

end do while 

end program 

FIG. 3.1. Pseudocode for processing a multiblock grid collection 

ner [21]. Using multiple grids to discretize the domain, allows the individual grids in the collection to be 

tailored. Thus, fine grids can be used in areas of greater interest near the body while coarse grids, requiring 

less computation, can be used in the far field regions. Multiblock applications, used in grand-challenge ap- 

plications such as computational fluid mechanics, aircraft simulation, galaxy formation, large-scale climate 

modeling, and computational combustion dynamics, can be characterized as follows: 

• The data domain is partitioned into subdomains that are called blocks. Blocks are structured grids 

representing a self-contained region for computation that can, except for boundary conditions, be 

operated on independently of the other blocks. 

• The number of blocks is relatively small (usually between 10 and 100) and may not be known until 

runtime. In general, the sizes of blocks are determined at runtime, and different blocks may have 

widely different sizes and shapes. 

• The processing of individual blocks uses regular data access schemes. The functions applied to 

different blocks may be different. We assume that the amount of processing to be done for each 

block is proportional to the size of the block. 

• Blocks need to interact. The interaction pattern is in general determined at runtime. 

3.1.1. Processing of Multiblock Grid Collections. All grids in a multiblock grid collection can be 

processed independently. As a consequence, a decentralized approach can be taken to determine a solution 

for the multiblock problem: the equation is not solved over the whole domain, but for each grid separately 

and in parallel to the solution for the other grids. Boundary updates between grids that abut each other 

handle the information flow between grids. 

We will define a generic algorithm which exploits the level of parallelism across the component grids of 

a multiblock grid collection, G, as well as the parallelism inherent in solvers for the individual grids. An 

abstract pseudocode version for such an algorithm is given in Figure 3.1. 

We assume a dynamic scenario in which the number of grids in the collection as well as the parameters 

of the individual grids (i.e., their origins, mesh sizes, and extents) are determined at runtime. The algorithm 



reads these parameters and allocates and initializes the individual grids in the collection as well as the data 

structures required to represent the topology of the collection and its boundaries. In this scenario, once the 

grid collection is set up it remains invariant. 

The core of the algorithm consists of a do-while loop, which is executed until a termination condition 

is satisfied. Such a condition could either depend on the properties of the solution such as its precision, 

or could just count the number of iterations performed up to a pre-defined limit. This loop is inherently 

sequential; each iteration begins with a boundary update phase, in which the boundary information between 

abutting grids is exchanged, followed by a call to the solver for each component grid in the collection G. 

A key assumption we make here is that the for every loop is parallel, so that solve.grid(g) can be 

executed independently for all grids in G. Since each g is a structured grid, any method for solving such 

a grid can be used here. As a consequence, the algorithm exploits two levels of parallelism: the inter-grid 

parallelism expressed by the for every loop, and the intra-grid parallelism of the solve.grid routine. During 

pre-processing, the boundary of each grid is updated. This involves an explicit assignment of solutions. 

For an internal boundary, solution vectors from neighboring grids are transferred. External boundaries are 

defined using local knowledge about the boundary of the global domain. The details of this approach depend 

on the specifics of the algorithm and the structure of the grid collection. 

3.2. Adaptive Mesh Refinement (AMR). Adaptive mesh refinement techniques are useful for re- 

ducing the computational resources required for solving a system of hyperbolic PDEs. As in the case of 

multiblock codes, a collection of grids is used to discretize the flow-field. The adaptive mesh refinement 

algorithm, introduced by Berger and Öliger [6], starts with a structured coarse mesh and adaptively places a 

finer grid on regions which require a finer resolution. This is continued recursively giving rise to a hierarchy 

of levels with multiple grids at each level. The computation then consists of using standard finite-difference 

techniques to approximate the solution on each grid with interpolation and projection operators being used 

to transfer data between grids at different levels of the hierarchy. Since these codes focus on time-dependent 

phenomena, such as tracking a shock, the hierarchy of grids are modified and reconstructed dynamically to 

match the underlying changing phenomena. 

Similar to the multiblock codes of the last subection, these algorithms exhibit a fair degree of parallelism 

since the grids are resolved independently and hence the solutions on all the grids at a level can be computed 

simultaneously. Also, if the grids are large enough, parallelism can be exploited to speed up the computation 

within each grid. Exploiting such parallelism adds to the overall complexity of the code. As indicated before, 

the issue is that even though the grids themselves are structured, the hierarchy of grids is irregular leading 

to irregular patterns of communication. Also, since the grid hierarchy is dynamic here, in order to effectively 

parallelize these codes, not only do the grids have to be dynamically distributed so as to maximize the 

parallelism, but also the irregular inter-grid communication patterns have to be generated each time the grid 
hierarchy is modified. 

The SAMR algorithm. The structured adaptive mesh algorithm can be described at an abstract 

level as follows. The algorithm starts with a structured coarse mesh representing a discretization of the 

physical domain under consideration and places finer grids over regions which need better resolution. This 

is continued recursively, as depicted by the recursive routine amr in Figure 3.2. Here, Gl represents the 

set of grids at level I while G represents the union of all the grids across all levels. Thus, at each level, 

first the solution on each of the grids at the level is computed. Then, the decision to regrid is made based 

on the error estimates. If there exists a finer level l+l, then the grids on the finer level are initialized by 

interpolating values from the coarser level I and the routine amr is recursively executed on the finer level. 



amr{ G, 1) 

do i = 1, r1 

for every   g G   G   do 

solve-grid (g) 

end for 

if ( regridding required ) 

adapt_grids( G, 1) 

endif 

if exists level 1+1 

interpolate( G, 1, 1+1) 

amr( G, 1+1) 

project ( G, 1+1,1) 

endif 

end do 

end    amr 

! solve for every grid g at level 1 

/ initialize level 1+1 

/ call amr recursively for level 1+1 

/ update values on level 1 

FIG. 3.2. An abstract representation of the adaptive mesh refinement algorithm. 

root: (7} 
(_)   level headers 

|     |  grid headers 

|—|—|—I   data 

FIG. 3.3.  The grid hierarchy for an AMR algorithm 

Once the solution on the finer level has been computed, it is projected up to update the values at the current 

level. 

As in the case of multiblock codes in the last subsection, the algorithm, as described, exhibits at least 

two levels of parallelism. First, on any given level, the computation on each of the grids at the level can be 

executed independently and in parallel. Second, the computation internal to each grid exhibits the typical 

loosely synchronous data parallelism of structured finite-difference grid codes. An efficient execution of such 

a code would require that the work is spread evenly across the target machine; this means that the total 

number of grid points on each processor, from each level in the hierarchy, should be roughly the same, 

independent of the number of grids and their shapes and sizes. 



In Figure 3.3, we show a picture of the data structures required to maintain a grid hierarchy. This 

structure has been designed keeping in view the potential parallelism in the algorithm. In the next subsection, 

we explore how the HPF directives can be used to control the locality of such a collection of grids. 

3.3. Processing of Grid Collections in HPF. In this section we study the application of HPF to 

grid collections. We focus on the algorithm introduced in the context of multiblock problems (Figure 3.1), 

which in fact provides a generic framework for dealing with arbitrary grid collections. Thus, the ideas 

described here are also applicable to the AMR codes except that in the latter case the grid hierarchy is 

dynamic and thus grid interactions have to be reconstructed everytime the grid structure changes. 

A Fortran 90 version of the algorithm for two-dimensional grids is given in Figure 3.4. We introduce 

the data structures required for the representation of the grid collection and outline the grid construction as 

well as the algorithm processing the grid collection. We do not explicitly describe the algorithm used by the 

solve.grid routine or the boundary-Update routine. 

The fact that we operate on a parallel grid collection may suggest a representation of G as a linked list 

of grids. However, neither Fortran nor HPF provides a construct for expressing the parallel evaluation of all 

elements of a linked list. As a consequence, we choose to represent a grid collection as a one-dimensional 

array, each element of which represents an individual grid in the collection. The type of the array elements 

is specified as a derived type; GRID-TYPE, which we describe in a prototypical form. For each class of 

algorithms, fields may have to be added to this type. In the algorithm of Figure 3.4, GRID-TYPE contains 

the following fields explicitly: 

• extent of the grid 

• a pointer to an array of grid data 

Depending on the particular application, other fields may be required, such as for storing boundary and 

topology information. However, we are not concerned about such fields here since they are specific to the 

particular type of algorithm and do not directly affect the parallelism. Also, for the AMR algorithm, this 

would represent the grids at one level. Additional data structures would be needed to keep track of the 

different levels and the relationships (parents, children and sibling) between the levels. 

The array GRID.COLL, whose elements are of type GRID-TYPE, represents the grid collection. Since 

we assume that the number of grids in the collection is determined at runtime, this array must be declared as 

allocatable. After reading n.grids and allocating GRID-COLL accordingly, the algorithms reads the extent 

of each grid, which determines the dimensions of the associated two-dimensional array data-array which is 

allocated dynamically. Following this, the activation of the procedure set-up sets up the grid collection for 

further processing. This includes defining the boundary of each grid and initializing its data. 

The remainder of the algorithm follows directly from the pseudocode as given in Figure 3.1. 
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TYPE GRID-TYPE 

INTEGER tl, t2 .' extent of grid 

REAL, POINTER :: grid.data(:, :) 

END  TYPE GRID-TYPE 

TYPE (GRID-TYPE), ALLOCATABLE::GRID-COLL(:)   ! GRID-COLL represents   G 

READ (*, *) n_grids / read number of grids in the grid collection 

ALLOCATE (GRID_COLL(n.grids)) 

DO 1 = 1, n-grids 

READ (*, *) GRID_COLL(I)%tl, GRID-COLL(I)%t2      .'read grid extents 

END DO 

DO 1 = 1, n_grids 

/ allocate individual grids in the grid collection: 

ALLOCATE (GRID-COLL(I)%grid-data(GRID.COLL(I)%tl+l, GRID.COLL(I)%t2+l)) 

END DO 

CALL set_up(GRID_COLL)    / define boundaries and initialize grid data 

DO   WHILE ( .NOT.   termination(GRID-COLL)) 

CALL boundary-update(GRID-COLL) 

DO I = 1, n_grids 

CALL solve-grid(GRID-COLL(I)) 

END DO 

END DO WHILE 

SUBROUTINE solve_grid(G) 

TYPE (GRID-TYPE), POINTER:: G 

DO I = 1, G%tl 

DO J = 1, G%t2 

G%grid-data(I, J) = ... 

END DO 

END DO 

END SUBROUTINE solve-grid 

FIG. 3.4. Fortran 90 program for processing a grid collection 
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3.3.1. Distributing the Grids Using HPF. Starting with the Fortran 90 version of the algorithm for 

processing a grid collection, we will now develop parallel versions using HPF. Three variants will be discussed 

which use different approaches for distributing the grids of the collection, with different consequences for the 

degree of parallelism in the resulting HPF program. 

The three approaches can be characterized as follows: 

Dl : distribute the grid collection, mapping each component grid to exactly one processor 

D2 : map each component grid to all processors 

D3 : map different component grids to disjoint subsets of processors. 

The first two distribution strategies are likely to be inefficient, particularly on machines with a large 

number of processors. Both strategies can only exploit one level of parallelism. The third approach permits 

grids to be individually distributed to a suitably sized subset of the available processors. This allows both 

levels of parallelism inherent in the algorithm to be exploited while providing the opportunity to balance 

the workload. The distributions require one or more of the following features from the approved extensions: 

mapping of pointers, mapping of components of derived types, mapping to subsets of processors, indirect 

distributions, and the dynamic redistribution of data. 

We will now discuss these methods in more detail separately. 

Distributing Each Component Grid to Exactly One Processor. In our first approach, we dis- 

tribute G such that each component grid is mapped to exactly one processor. Note that we do not exclude 

the possibility that different component grids are mapped to the same processor. That is, a processor owns 

several grid components. This strategy implies that only the outer level of parallelism in the code - the 
parallelism across G - can be exploited. 

We consider two options for expressing such a distribution in HPF. The simplest way would be to 

distribute G by block (which is the initial distribution chosen in the algorithm). In this approach, some 

processors may remain idle; furthermore, the sizes of grids - which may radically differ - are not taken into 

account which may lead to an unbalanced computational load. In order to have finer control over the load 

balance, the algorithm in Figure 3.5 uses an INDIRECT distribution. Such a distribution is controlled by 

a mapping array, MAP, which is of the same size as GRID.COLL and can be used to explicitly control the 

distribution of GRID-COLL. This is done in such a way that for each element, i, in the index domain of 

GRID-COLL, the index of the associated processor is placed into MAP(i). The mapping array will in general 

be defined dynamically, depending on data determined at runtime. Here, the COMPUTE-MAPPING routine 

is called to determine a suitable mapping and to initialize MAP appropriately. The REDISTRIBUTE 

directive is then used to remap GRID-COLL using the computed mapping array. Once the array is remapped, 

the individual grids can be allocated. Note that the GRID-COLL has to be declared DYNAMIC (with an 

initial block distribution) in order to allow its final distribution to determined at runtime. 

We assume here that the number of grids in the collection is relatively small; therefore MAP is not 

distributed but would be replicated across all the processors. 

As mentioned above, the distribution strategy discussed here can only exploit the parallelism across 

the set of component grids. This can be expressed in HPF by declaring the loop iterating over the grids 

of the collection as parallel using the INDEPENDENT directive. However, just declaring the loop to be 

independent is not enough in this case. This is because the INDEPENDENT directive asserts that there 

are no loop-carried dependences but does not prohibit the routine to read the same distributed global data 

through common blocks or modules. In such a situation the processors owning the global data have to 

be executing the call to the routine since they have to send the data to the processors executing the code 
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!HPF$ PROCESSORS P(NUMBER_OF-PROCESSORS()) 

TYPE GRID_TYPE 

INTEGER tl, t2 / extent of grid 

REAL, POINTER :: gricLdata(:, :) 

END  TYPE GRID.TYPE 

TYPE (GRID.TYPE), ALLOCATABLE::GRID_COLL(:)   ! GRID-COLL represents   G 

!HPF$ DYNAMIC, DISTRIBUTE (BLOCK) :: GRID_COLL 

READ  (*, *) n.grids / read number of grids in the grid collection 

ALLOCATE (GRID.COLL(n_grids)) 

CALL COMPUTE.MAPPING (GRID_COLL, MAP) / define MAP 

DO I = 1, n-grids 

READ (*, *) GRID_COLL(I)%tl, GRID.COLL(I)%t2     head grid extents 

END DO 

DO I = 1, n-grids 
ALLOCATE (GRID_COLL(I)%grid.data(GRID.COLL(I)%tl+l, GRID-COLL(I)%t2+l)) 

END DO 

CALL set_up(GRID_COLL)    / define boundaries and initialize grid data 

DO   WHILE ( .NOT.   termination(GRID.COLL)) 

CALL boundary.update(GRID_COLL) 

!HPF$      INDEPENDENT 

DO I = 1, n-grids 

!HPF$ ON (HOME (GRID-COLL(I))), RESIDENT 

CALL solve_grid(GRID.COLL(I)) 

END DO 

END DO WHILE 

SUBROUTINE solve_grid(G) 

TYPE (GRID _TYPE), POINTER:: G 

DO I = 1, G%tl 

DO J = 1, G%t2 

G%grid_data(I, J) = ... 

END DO 

END DO 

END SUBROUTINE solve_grid 

FIG. 3.5.  Grid Collection Processing: First HPF version 
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within the routine3. The code within the solve^grid routine can be set up such that it does not access any 

global data, however the compiler cannot determine this without aggressive (and expensive) interprocedural 

analysis. This can be avoided by using the declarations shown in Figure 3.5. The ON directive indicates 

that the call to solve.grid is to be executed only on the processor owning grid GRID-COLL(I). Along with 

this, the RESIDENT directive asserts that the routine accesses data resident only on this processor and 

does not access any data resident on other processors. 

Given these declarations, the loop iterations (and in turn the call to the solve.grid routine) can be 

executed in parallel, without communication. Thus, all component grids of the grid family are processed 

in parallel, however, each individual execution of solve.grid is strictly sequential. All communication occurs 

only in the boundary-update routine when two grids which abut each other (and thus have to exchange 

boundary information) are mapped to different processors. 

Along with only exploiting the outer level of parallelism, this approach has several other drawbacks. In 

many applications, the number of grids in a collection is not large and may be significantly smaller than the 

number of processors of a massively parallel machine, thus restricting the amount of parallelism that can 

be effectively utilized. Also, the grids may vary greatly in size, resulting in an uneven workload on those 

processors which are involved in the computation. Thus, processors with the large grids become a bottleneck 

while others are idle. 

Distributing Each Component Grid to All Processors. Our second strategy does not distribute 

the array GRID-COLL as above, but maps each individual grid separately. That is, rather than constructing 

a single distribution which maps each grid as a whole to exactly one processor - we independently distribute 

the data arrays of each individual grid. 

The HPF version of this code is given in Figure 3.6. The mapping is expressed by declaring the pointer, 

grid-data, in the derived type GRID-TYPE to be distributed by (*, BLOCK) ONTO P, where P is the 

set of all processors available to the program. The array GRID.COLL is not distributed, resulting in its 

replication across all processors. 

This approach exploits the parallelism within each grid, but not the parallelism across the grids of a 

collection. Each processor may own a part of each grid, leading to a more even workload; however, some of 

the grids may not be large enough to effectively exploit all the processors in the system. 

The parallelism in the code is made explicit by using the INDEPENDENT directive to declare both 

levels of the nested loop in the solver routine to be parallel. 

Note that the loop which calls solve^grid is executed sequentially by all processors, and all processors 

simultaneously call the solver routine on each grid. Here, the communication required for solve.grid is 

similar to that necessary for a typical structured grid code and can be generated by the compiler in a similar 

fashion. The communication required for the boundary update routine is more complicated here since the 

actual pattern of data to be transferred between neighboring grids is not known until runtime. 

Distributing Each Component Grid to a Subset of Processors. Given the drawbacks of the 

previous two approaches, a more optimal approach is to map each grid of the collection separately to a 

suitably sized contiguous subset of processors; different grids are mapped to disjoint subsets. This allows 

both levels of parallelism in the algorithm to be exploited while providing the opportunity to balance the 

workload. 

3This is under the assumption that the underlying system does not support one-sided communication since in that case the 

processor owning the data does not need to be involved in the communication. 
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!HPF$ PROCESSORS P(NUMBER_OF_PROCESSORS()) 

TYPE GRID-TYPE 

INTEGER tl, t2 / extent of grid 

REAL, POINTER :: grid-data(:, :) 

!HPF$ DISTRIBUTE grid-data(*, BLOCK)  ONTO P 

END  TYPE GRID-TYPE 

TYPE (GRID-TYPE), ALLOCATABLE::GRID_COLL(:)   / GRID-COLL represents   G 

READ  (*, *) n-grids / read number of grids in the grid collection 

ALLOCATE (GRID-COLL(n-grids)) 

DO I = 1, n-grids 

READ (*, *) GRID_COLL(I)%tl, GRID-COLL(I)%t2      .'read grid extents 

END DO 

DO I = 1, n-grids 

/ allocate individual grids according to statically specified (*, BLOCK) distribution 

ALLOCATE (GRID_COLL(I)%grid-data(GRID-COLL(I)%tl+l, GRID_COLL(I)%t2+l)) 

END DO 

CALL set-up(GRID-COLL)    / define boundaries and initialize grid data 

DO   WHILE ( .NOT.   termination(GRID.COLL)) 

CALL boundary-update(GRID-COLL) 

DO 1 = 1, n-grids 

CALL solve-grid(GRID-COLL(I)) 

END DO 

END DO WHILE 

SUBROUTINE solve-grid(G) 

TYPE (GRID-TYPE), POINTER:: G 

!HPF$ INDEPENDENT, NEW J 

DO I = 1, G%tl 

!HPF$        INDEPENDENT 

DO J = 1, G%t2 

G%grid_data(I, J) = ... 

END DO 

END DO 

END SUBROUTINE solve-grid 

FIG. 3.6. Grid Collection Processing: Second HPF version 
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!HPF$ PROCESSORS P(NUMBER_OF_PROCESSORS()) 

TYPE GRID_TYPE 

INTEGER tl, t2 / extent of grid 

INTEGER lo, hi / lower and upper bounds for the target processor subset 

REAL, POINTER :: grid_data(:, :) 

!HPF$   DYNAMIC grid-data 

END  TYPE GRID_TYPE 

TYPE (GRIDJTYPE), ALLOCATABLE::GRID.COLL(:)   / GRID.COLL represents  G 

READ (*, *) n-grids / read number of grids in the grid collection 

ALLOCATE (GRID_COLL(n_grids)) 

DO I = 1, n-grids 

READ (*, *) GRID.COLL(I)%tl, GRID_COLL(I)%t2     head grid extents 

END DO 

CALL COMPUTE.PROCS-SUBSET (GRID.COLL)   / compute processor subset (lo, hi) for each grid 

DO 1 = 1, n-grids 

ALLOCATE (GRID_COLL(I)%grid.data(GRID-COLL(I)%tl+l, GRID.COLL(I)%t2+l)) 

!HPF$      REDISTRIBUTE G(*, BLOCK) ONTO P(G%lo:G%hi) 

END DO 

CALL set_up(GRID_COLL)    / define boundaries and initialize grid data 

DO   WHILE ( .NOT.   termination(GRID.COLL)) 

CALL boundary.update(GRID_COLL) 

!HPF$     INDEPENDENT 

DO 1=1, l%ngrids 

!HPF$ ON (HOME (GRID.COLL(I))), RESIDENT 

CALL solve.grid(GRID_COLL(I)) 

END DO 

END DO WHILE 

SUBROUTINE solve_grid(G) 

TYPE (GRID-TYPE), POINTER:: G 

!HPF$ INDEPENDENT, NEW J 

DO I = 1, G%tl 

!HPF$       INDEPENDENT 

DO J = 1, G%t2 

G%grid_data(I, J) = ... 

END DO 

END DO 

FIG. 3.7.  Grid Collection Processing: Third HPF version 
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The HPF program embodying this approach, is shown in Figure 3.7. The array GRID-COLL is not 

distributed, while the pointer grid-data in the derived type GRID-TYPE is declared dynamic. After deter- 

mining the extent of each grid, the routine COMPUTE-PROCSSUBSET is called to compute the subset 

of processors to which each grid should be mapped, storing the indices of the lower and upper bound of 

the processor subset in the components lo and hi. These bounds are then used to distribute the data array 

associated with each grid at the time of allocation. 

Both loops - the one iterating over the component grids and the nested loop in solve^grid - have to 

be declared parallel. Note that one still requires the ON and RESIDENT directives on the first loop, 

otherwise the calls to the solver routines would be sequentialized. 

The mapping of the grids in the collection here is controlled by the user through the routine COM- 

PUTE-PROCSSUBSET. When mapped properly, multiple grids can be processed in parallel by subsets of 

processors. This allows the parallelism to be exploited at both levels while having a much better control on 

the overall load balance of the computation. The communication required for this strategy is similar to that 

for the second strategy. 

Before closing the discussion on multiblock codes, we briefly describe the compiler analysis required 

to generate the communication required for the different distribution strategies. Since each of the grids 

in the collection is block-structured, the compiler can easily analyze the solve-grid routine and insert the 

required communication statements. Note that not knowing the target subset of processors for a grid in the 

third strategy is similar to not knowing the complete set of processors at compile time and just requires the 

compiler to generate message passing statements parameterized by the lower and upper bounds of the target 

processor subset. 

The situation is a little more complicated for the communication required for the boundary update 

routine. The issue here is that not only that the distribution is known only at runtime but also the actual 

boundary portions that abut each other is dependent on the grid structure, i.e., is data dependent, and 

hence is also not known at compile time. Thus, the compiler needs to generate code which will at runtime 

determine the required communications based on the portions of the distributed arrays to be exchanged. The 

computation is generally quite simple and experience with such applications has shown that the generated 

codes achieve reasonable performance [1, 19]. 

4. Unstructured Grid Applications. Unstructured grid codes provide several advantages in model- 

ing the flow over complex geometries. In particular, they provide added flexibility in generating and adapting 

meshes for complex configurations. However, such codes generally require more computational resources and 

are more difficult to parallelize. 

Unstructured grid flow solvers generally use a finite element approach to spatially discretize the domain 

using piecewise linear flux functions over each individual triangle in 2D or tetrahedra in 3D. One approach is 

to use a compact vertex based scheme, with an edge based data structure. The flow variables are stored at 

each vertex in the mesh while the residuals are constructed by looping over edges that define the connectivity 

of the vertices. 

The logical simplicity of regular grids - where the coordinates of one gridpoint can be used to immediately 

determine the coordinates of all its neighbors - is lost for unstructured grids: the numbering of the vertices 

in such a grid reflects properties of the grid generation algorithm, the object geometry, and the refinement 

strategy. In general, it cannot be assumed that the associated order is correlated with the physical location 

of gridpoints. As a consequence, the neighborhood relation must be explicitly represented and access to 

values inherently requires using indirection via index arrays.  This complicates the parallelization of such 

17 



codes since the pattern of data accesses are now dependent on the data values, i.e., the grid connectivity, 

and hence are known only at runtime and cannot be analyzed at compile time. 

Another consequence of the structure of the underlying data structures in such codes is that simple 

data distributions strategies, such as block and cyclic do not work. In fact, the partitioning of such grids 

for parallel execution is a complex problem. There exist several grid partitioning packages which attempt 

to subdivide the grid into contiguous, mutually disjoint regions to be mapped onto the processors of the 

underlying parallel machine. The overall criterion for partitioning is the minimization of the total execution 

time, which depends on many parameters, including the degree of parallelism in the algorithm, the amount 

of communication which would be generated by the partition, the amount of processing at each node, and 

the overall load balance. The issue in this paper is not how we partition the mesh but how the generated 

partitioning is represented in a generic manner using HPF directives. 

Consider an abstraction of a two-dimensional unstructured mesh Euler solver in which the mesh is 

represented by triangles and the flow variables are stored at the vertices of the mesh. Figure 4.1 shows one 

way in which this computation may be specified. The mesh is represented by the array GRID of NODEs 

each of which represents a vertex. Along with other fields such as the x-y coordinates (not shown here), the 

derived type for each node also contains the flow variables represented by VI and V2. The connectivity of 

the overall mesh is represented by the array EDGE such that EDGE(I,1) and EDGE(1,2) are the node 

numbers at the two ends of the Ith edge. 

We reproduce only the main computational kernel of the code, an edge-based residual construction loop 

which updates the values at the end vertices of each edge based on calculation of flux across the edge. This 

is represented by the J loop in Figure 4.1 which uses array indirection to extract and store values of the flow 
variables at the two vertices of each edge. 

Since the partitioning of the mesh is to be determined at runtime, the arrays constituting the mesh, 

GRID and EDGE, are declared to be DYNAMIC. As indicated above, the irregularity of the vertex 

numbering implies that the INDIRECT distribution is needed to map the vertices to the processors. Thus, 

the routine GRID-PARTITIONnot only partitions the grid but also returns the mapping array NODEMAP 

such that the value of its ith element represents the index of the processor on which the ith element of the 

GRID array is to be mapped. 

Once the partitioning of the vertices has been determined, we can also determine the mapping of array 

representing the edges. Given the structure of the computation, it would be useful to distribute EDGE 

in such a way that the values at one or both of its nodes are on the same processor. We have chosen to 

distribute the elements of EDGE to the processor which owns the values for the first of its nodes. We again 

use the INDIRECT distribution for this, assuming that the GRID-PARTITION routine will also setup the 

EDGEMAP array based on the values in the EDGE array. 

Note that the mapping arrays are as large as the unstructured mesh itself and hence have to be distributed 

themselves. This is in contrast to the mapping array used with multiblock codes in the last section which 

was used to map the grids in a collection and hence was samll and could be replicated across the processors. 

The computation is specified using a INDEPENDENT loop, with an ON clause to specify where each 

iteration is to be performed. Thus the iterations of the loop, over the edges in this case, can be executed in 

parallel. In Figure 4.1, the ON clause specifies that the Ith iteration should be performed on the processor 
that owns the (/, l)th element of EDGE. 

The variables ATI, N2 and DELTAV are private variables for each iteration and hence are declared in 

the NEW clause.  Thus assignments to these variables do not cause flow dependences between iterations 

18 



!HPF$     PROCESSORS P(NUMBER_OF J>ROCESSORS()) 

INTEGER :: N !   number of vertices 

INTEGER :: M !   number of edges 

TYPE NODE 

REAL ::    VI, V2 !  flow variables 

END  TYPE NODE 

TYPE (NODE), ALLOCATABLE :: GRID(:) 

REAL ,   ALLOCATABLE :: EDGE(:, :) 

INTEGER, ALLOCATABLE :: NODEMAP(:), EDGEMAP(:)   ! mapping arrays 

!HPF$   DYNAMIC, DISTRIBUTE (BLOCK) :: GRID 

!HPF$   DYNAMIC, DISTRIBUTE (BLOCK, *) :: EDGE 

!HPF$   DISTRIBUTE ( BLOCK) :: NODEMAP, EDGEMAP 

! Read N, M, allocate arrays GRID, EDGE, NODEMAP and EDGEMAP 

ALLOCATE (GRID(N)) 

ALLOCATE (NODEMAP(N)) 

ALLOCATE (EDGEMAP(N)) 

ALLOCATE (EDGE(M, 2)) 

! Code for initialization of GRID and EDGE 

! Partition the grid, setting up the mapping arrays 

CALL GRID_PARTITIONER(GRID, NODEMAP, EDGE, EDGEMAP) 

! Redistribute the GRID and EDGE arrays based on the values returned by the partitioner 

!HPF$ REDISTRIBUTE GRID(INDIRECT(NODEMAP)) 

!HPF$ REDISTRIBUTE EDGE(INDIRECT(EDGEMAP)) 

! Sweep over the edges of the grid 

!HPF$ INDEPENDENT, ON HOME (EDGE(J, 1)), NEW(N1, N2, DELTAV), REDUCTION (GRID) 

DO J = 1, M 

Nl = EDGE(J, 1);      N2 = EDGE(J, 2) 

DELTAV = F(GRID(N1)%V1, GRID(N2)%V1) 

GRID(N1)%V2 = GRID(N1)%V2 - DELTAV 

GRID(N2)%V2 = GRID(N2)%V2 + DELTAV 

ENDDO 

FIG. 4.1. Sweep over edges of an unstructured grid 

19 



of the loop. For each edge, the value of the flow variable VI at the two incident nodes are read and used 

to compute the flux contribution DELTAV for the edge. This contribution is then accumulated into the 
residual V2 for the two nodes. 

Since each vertex has multiple edges incident upon it, multiple iterations will accumulate V2 values 

at each node. Thus, the GRID array is declared as a reduction allowing the compiler to generate correct 
computation for the accumulations. 

In most cases, the two vertices of an edge are in the same partition and hence are mapped to the same 

processor. However, for cross-partition edges, the two vertices will be mapped to different processors. In 

this case the values have to be gathered before the loop body and the updates have to be scattered after the 

loop body. The compiler has to analyze the code and generate the communication required to gather and 

scatter these values. The problem is that the values of the flow variables for each node are accessed via the 

edges. Thus a level of indirection is involved in each access. Given that the data distribution of each of the 

arrays is determined at run time, the compiler cannot detect which references are local and which are not. 

One of the techniques used to generate the communication in such situations is called the inspec- 

tor/executor strategy [14, 20]. For each parallel loop, the compiler generates two loops: the first called 

the inspector utilizes the distribution and the edge connectivity to generate the communication schedule; 

the second, called the executor, uses this schedule to gather the node values before the loop execution and 

scatter the updates after the execution. Note that this confines the communication among the processors to 

the scatter/gather phase allowing the body of the loop to be executed completely in parallel. The overhead 

associated with the inspector loop is generally fairly large. However, many of the unstructured codes make 

several sweeps over the same mesh allowing the cost of the inspector to be amortized across the sweeps [1,3]. 

5. Conclusion. HPF is a well-designed language that allows a reasonably efficient and concise for- 

mulation of most algorithms used in aerospace applications. HPF programs are much higher level than 

equivalent algorithms that use explicit message passing primitives such as those offered by MPI or PVM, 

and are thus easier to develop and less error-prone. On the other hand, HPF cannot in all cases provide the 

same degree of control over the parallelism of an application as an MPI program can, resulting in a potential 

performance penalty. Over the past few years, much research in language design, compilers, and runtime 

systems was devoted to deleting or minimizing this effect, in particular for programs with irregular data and 

work distributions. Although some problems remain, it has been shown that for many relevant benchmarks 

HPF can achieve almost the same performance as MPI programs [9, 4, 5]. 

The. data parallel paradigm represented by HPF supports the "loosely synchronous" execution of a 

set of identical processes working on different segments of the same problem. Some applications, such as 

multidisciplinary optimization, need a more flexible way to express parallelism. They can be generally 

characterized by the fact that tasks may be created dynamically in an unstructured way, different tasks may 

have different resource requirements and priorities, and that the structure and volume of the communication 

between a pair of tasks may vary dramatically. 

HPF is not designed to deal with such problems adequately. However, a number of methods have been 

proposed to address this issue in the context of the language. One important approach uses coarse-grain 

tasks, each comprising an entire HPF program. In effect, HPF is wrapped in a coordination language. 

Proposals along this line have been made in the Fortran M [10] and Opus languages [7]. Opus encapsulates 

HPF programs as object-oriented modules, passing data between them by accessing shared abstractions 

(SDAs) which are monitor-like constructs. 

In recent years, a new generation of high performance architectures has become commercially available. 
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Many of these machines are either symmetric shared-memory architectures (SMPs) or clusters of SMPs, 

where an interconnection network connects a number of nodes, each of which is an SMP. Thus, these 

machines display a hybrid structure integrating shared-memory with distributed-memory parallelism. One 

of their dominating characteristics is their use of a deep memory hierarchy, often involving multiple levels 

of cache. As a consequence, these architectures have not only to deal with the locality problem typical for 

distributed-memory machines - which is addressed by HPF -, but also with cache locality. A cache miss in 

a program executing on a cluster of SMPs may be more expensive than a non-local memory access. HPF 

and its compilers currently are not designed to deal with such issues. The future will show whether the 

(possibly extended) HPF paradigm will be able to efficiently cope with such architectures, or whether other 

programming methods will prove more adequate. 
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